

Tetrahedron Letters

Tetrahedron Letters 46 (2005) 5373-5375

An asymmetric *ent*-kauranoid dimer from *Isodon rubescens* var. *lushanensis*

Quan-Bin Han, a,b Yang Lu,c Li Wu,c Zhen-Dan He,b Chun-Feng Qiao,b Hong-Xi Xu,b Qi-Tai Zheng and Han-Dong Suna,*

^aState Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, PR China ^bChinese Medicine Laboratory, Hong Kong Jockey Club Institute of Chinese Medicine, Shatin, Hong Kong ^cInstitute of Materia Medica, Chinese Academy of Medical Sciences, Beijing 100050, PR China

> Received 21 March 2005; revised 30 May 2005; accepted 1 June 2005 Available online 22 June 2005

Abstract—A novel asymmetric *ent*-kauranoid dimer, lushanrubescensin J (1), was isolated from *Isodon rubescens* var. *lushanensis*. Its structure was elucidated by the spectroscopic evidences. The stereochemistry was confirmed by the single crystal X-ray diffraction of its tetraacetate. Compound (1) exhibited potent inhibitory activity against K562 cells with $IC_{50} = 0.93 \,\mu\text{g/mL}$. © 2005 Elsevier Ltd. All rights reserved.

In our previous reports of the phytochemical investigation of Isodon rubescens complex, several novel ent-kaurane dimers that possessed a rare linkage of a single carbon bond between two structural subunits were chemically described.^{1,2} Their biotransformation from the normal ent-kauranoids isolated from the genus Isodon was also proposed. They were believed to be interesting and mentioned in 'Hot off the press' of Natural Product Reports.³ In the proposed biotransformation, the [4+2] cycloaddition, between the α,β -unsaturated ketone group of one diterpene with the olefin group of another one, yielded a six-membered heterocycle, which linked the two monomers together. Our further search for more new bioactive compounds from I. rubescense var. lushanensis led to the isolation and elucidation of another novel *ent*-kauranoid dimer (1).⁴ Interestingly, this dimer contained the key six-membered heterocyclic linkage. Its stereochemistry was determined by the single crystal X-ray diffraction of its tetraacetate. This discovery is of important support to the proposed biotransformation. Compound (1) was also assayed for its inhibitory effect against K562 cells and obtained IC₅₀ of 0.93 μ g/mL.

Compound 1, obtained as amorphous powder, was determined to possess the molecular formula $C_{40}H_{52}O_{12}$ by its negative HRFABMS ($[M-H]^+$, found 723.3400, calcd. 723.3381), 5 corresponding to 15 degrees of unsaturation. It exhibited a single spot on TLC (silica gel) developing with several solvent systems. And its homogeneity was confirmed by the ¹³C NMR spectrum, in which 40 carbon signals mostly appeared in pairs, due to the asymmetric skeleton of diterpene dimer.

By comparison with the ¹³C NMR data (Table 1) of a known *ent*-kauranoid epinodosin (2), one of the major constituents of this plant, ⁴ it was revealed that these

Keywords: Isodon rubescens var. lushanensis; ent-Kaurane dimer; Lushanrubescensin J; Tetraacetate.

^{*}Corresponding author. Tel.: +86 871 522 3251; fax: +86 871 521 6343; e-mail: hdsun@mail.kib.ac.cn

Table 1. The ¹H and ¹³C NMR assignments for compounds 1 and 2 in C₅D₅N

No.	1a		No.	1b		2
	¹ H	¹³ C		¹ H	¹³ C	¹³ C
1	4.55 (dd, 6.8, 10.4)	76.8 d	1'	4.82 (dd, 6.5, 11.0)	76.5 d	76.7 d
2	1.76 (2H) ^d	^a 23.8 t	2′	1.84 (2H) ^e	^a 24.0 t	24.0 t
3	1.33 ^f and 1.24 ^g	37.0 t	3′	1.33 ^f and 1.24 ^g	37.0 t	36.9 t
4 5		31.5 s	4′		31.5 s	31.6 s
5	3.06 (s)	53.9 d	5′	2.94 (s)	54.3 d	52.3 d
6	5.70 (br s)	102.0 d	6′	5.65 (d, 6.4)	102.5 d	102.0 d
7		172.2 s	7′		170.3 s	170.8 s
8 9		57.3 s	8′		53.9 s	56.5 s
9	2.78 (d, 10.2)	54.1 d	9′	2.64 (d, 9.8)	49.7 d	53.9 d
10		51.0 s	10'		50.0 s	51.0 s
11	4.27–4.29 (m)	62.6 d	11'	4.65-4.68 (m)	64.4 d	63.2 d
12	2.88–2.91 (m, Hax) 2.84 (Heq) ^h	32.0 t	12′	1.90–1.94 (m) and 1.24 ^g	37.1 t	41.5 t
13	2.25–2.28 (m)	35.4 d	13′	2.41-2.45 (m)	36.0 d	35.2 d
14	2.86 ^h and 1.62 ⁱ	35.2 t	14'	2.66–2.68 (m) and 1.63 ⁱ	33.5 t	33.0 t
15		208.5 s	15′		153.9 s	201.5 s
16		85.7 s	16′		119.2 s	150.9 s
17	2.26–2.29 (m, Heq) 1.96 (Hax) ^j	23.3 t	17′	1.96 (2H) ^j	17.6 t	117.6 t
18	0.95 (s, 3H)	^b 33.0 q	18′	0.95 (s, 3H)	^b 32.9 q	33.5 q
19	0.95 (s, 3H)	^c 23.1 q	19′	0.95 (s, 3H)	°23.0 q	23.1 q
20	4.34 (d, 9.4)	73.8 t	20'	4.07 (d, 9.4)	74.3 t	73.6 t
	4.23 (d, 9.4)			4.02 (d, 9.4)		

a,b,c Signals which may be exchanged. d,e,f,g,h,i,j Overlapped signals.

two substructures of 1 (1a and 1b), encompassing rings A-C with their associated substituents, were identical with compound 2. And the α,β -unsaturated ketone group [δ 201.5 (s, C-15), δ 150.9 (s, C-16) and δ 117.6 (t, C-17)] of **2** were replaced by a ketonic carbon [δ 208.5 (s, C-15)], an oxygenated quaternary carbon [δ 85.7 (s, C-16)], an olefinic bond [δ 153.9 (s, C-15'), δ 119.2 (s, C-16')], and two methylenes [δ 23.3 (t, C-17) and δ 17.6 (t, C-17')] of **1a** and **1b**. These key changes of these characteristic signals suggested that subunits 1a and 1b were linked by a six-membered dihydropyran ring. This was confirmed by the related HMBC and ROESY correlations (Fig. 1).

The configuration of C-16 was deduced to be S on the basis of the upfield shift of C-12 ($\Delta\delta$ -9.5) caused by the γ-steric compress effect between Heq-17 and Heq-12,6 which was supported by the NOE effects of these two protons. Therefore, compound 1 was elucidated to

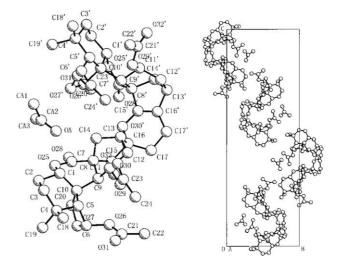


Figure 2. Crystal structure of tetraacetate of 1.

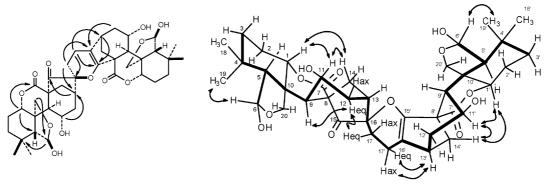


Figure 1. Selected HMBC (from H to C) and ROESY correlations of 1.

be an asymmetric dimer of **2** with a novel linkage of a six-membered dihydropyran ring as shown in Fig. 1, and named lushanrubescensin J. This dimer exhibited cytotoxic activity against human tumor K562 cells with $IC_{50} = 0.93 \, \mu g/mL$ (with cisplatin as the positive control, $IC_{50} = 1.14 \, \mu g/mL$).⁴

However, this elucidation arose some questions about the unusual six-membered heterocycle, since there were several signals overlapped in the ¹H NMR spectrum. Attempts to get its single crystal for X-ray analysis have been taken and gained nothing. Finally, we obtained the crystal of its tetraacetate from its solution of acetone/EtOAc/petroleum ether. The X-ray diffraction completely confirmed its structural assignment including its relative stereochemistry (Fig. 2).⁷

References and notes

- Han, Q. B.; Lu, Y.; Zhang, L. L.; Zheng, Q. T.; Sun, H. D. Tetrahedron Lett. 2004, 45, 2833–2837.
- Han, Q. B.; He, Z. D.; Qiao, C. F.; Xu, H. X.; Sun, H. D. Helv. Chim. Acta 2005, 88, 817–821.
- 3. Hill, R. A.; Sutherland, A. Nat. Prod. Rep. 2004, 21, H9.
- Han, Q. B.; Li, M. L.; Li, S. H.; Mou, Y. K.; Lin, Z. W.; Sun, H. D. Chem. Pharm. Bull. 2003, 51, 790–793.

- 5. Compound 1: white amorphous powder; $[\alpha]_{\rm D}^{20}$ -72.7 (C₅H₅N, *c* 0.3); IR (KBr) $\nu_{\rm max}$: 3397, 2956, 1773, 1725, 1457, 1259, 1055 cm⁻¹; ¹H NMR (400 MHz, C₅D₅N) and ¹³C NMR (100 MHz, C₅D₅N) see Table 1; negative FABMS m/z: 723 [M-H]⁺; negative HRFABMS m/z: 723.3400 [M-H]⁺ (calcd 723.3381 for C₄₀H₅₁O₁₂).
- Han, Q. B.; Li, S. H.; Peng, L. Y.; Sun, H. D. Heterocycles 2003, 60, 933–938.
- 7. Colorless cube crystals of tetraacetate of lushanrubescensin J, crystallized from acetone/EtOAc/petroleum ether, belong to the orthorhombic space group $P2_12_12_1$. Crystal data: $C_{48}H_{60}O_{16} \cdot (C_3H_6O)_{0.5}, \quad M = 892.99, \quad a = 9.198(1), \quad b = 1.098$ 13.904(1), c = 42.068(1) Å, $\beta = 104.56(1)^{\circ}$, $V = 5380.0(7) \text{ Å}^3$, Z = 4, $d = 1.138 \text{ g/cm}^3$, Mo K α radiation, linear absorption coefficient $\mu = 1.0 \text{ cm}^{-1}$. A colorless cube of dimensions $0.20 \times 0.40 \times 0.80 \text{ mm}$ was used for X-ray measurements on a MAC DIP-2030K diffractometer with a graphite monochromator, maximum 2θ value of 50.0° was set. The total number of independent reflections measured was 6029, 4779 of which were considered to be observed $(|F|^2 \ge 3\sigma |F|^2)$. The structure was solved by the direct method SHELXS-86 and expanded using difference Fourier techniques, refined by the program and method NOMCSDP and full-matrix least-squares calculations. Hydrogen atoms were fixed at calculated positions. The final indices were $R_f = 0.077$, $R_w = 0.090$ ($w = 1/\sigma |F|^2$). The crystal structure has been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition number CCDC 266501.